Center for Tokamak Transient Simulations Computational and Applied Math Issues

M.S. Shephard – Intro and meshes

Sherry Li – Solvers

Sam Williams – Performance

Proposed Efforts

Original proposal had a full set of applied math and CS activities

- Solver developments
 - Scaling of triangular solves
 - Leveraging Trilinos solvers
 - Structure level preconditioning
- Finite element discretization improvements
- Mesh related operations
 - Mesh adaptation and solution transfer and execution on new machines
 - Multiscale coupling emphasis on coupling with FronTier
 - Parallel mesh based PIC operations
- Performance optimization
- Uncertainty quantification (UQ)
- Data management and fault tolerance
- Software engineering
- The Trilinos based efforts and UQ dropped entirely
- Other areas cut quite a bit

One Cut at Efforts to be Carried Out

- Solver developments important to advance the whole solve
 - Scaling of triangular solves
 - Structure level preconditioning
 - Work with STRUMPACK group to develop a robust solver algorithm
- Finite element discretization improvements likely limited to looking for opportunities based on advances we see elsewhere
- Mesh related operations
 - Mesh adaptation and solution transfer and execution on new machines
 - Multiscale coupling emphasis on coupling with FronTier
 - Parallel mesh based PIC take advantage of efforts supported by other fusion SciDACs
- Performance optimization hope to take advantage of the expertise through out all parts of the codes
- Data management and fault tolerance take advantage of WDM center efforts for data management. Expect little to no effort on fault tolerance.
- Software engineering

Agenda for Today

- Solver Efforts Sherry Li
- Performance Optimization Sam Williams
- Parallel Mesh including status of a parallel mesh PIC development (will not cover all the slides) – Mark Shephard
- Fusion domain meshing tool (will not cover all the slides) – Mark Shephard
- Discussion